Workshop on presentation of Pilot standards
Chisinau December 9-10, 2010

Dr. Robert Jeanjean
High voltage transmission lines
DESIGN OF OVERHEAD LINES

Possibility of moving forward to a probabilistic approach to structural design in an objective best fit lines to their environment, more effective coordination between the various components of a structure and convergence to the approach advocated by the new CENELEC 50341.

This new design method based on statistical characterization of climate events.

The proposed probabilistic design method allows:
• Reliability more homogeneous structures of the transportation system, and justify the design of structures rigorously
• Reliability more homogeneous structures of the transportation system, and justify the design of structures rigorously
• Better coordination of mechanical components together
• Convergence towards international standards.
High voltage transmission lines

DESIGN OF OVERHEAD LINES

This methodology can make the network less vulnerable in order to guarantee the safety of persons and property and ensure continuity of supply to customers: the application of probabilistic design method can shorten the program Securing the transportation system.
High voltage transmission lines

DESIGN OF OVERHEAD LINES

What are the Basic Electrical Milestones?

- CONDUCTORS
- CLIMATIC LOADS
- SUPPORTS AND FOUNDATIONS
CONDUCTORS

- Types of conductors

- Geometric and mechanical properties
- Behaviour of suspended cable: parabole and catenary equation of state change, voltage change with the over load on the cable
- Vibration conductors: Causes, remedies, voltage limits
- Galop conductors: explanation of the phenomenon, effects on the lines, mitigation measures
- Ampacity of conductors: parameters affecting the heating of the conductor by Joule effect, calculating the maximum ampacity conditions continued and urgent
High voltage transmission lines

CLIMATIC LOADS

- Wind: description, variation in height of the wind, reference pressure, wind efforts

- Ice and ice-wind combined: type of accretion on wires and brackets, quantification of ice loads and forces transmitted to the supports

- Temperature: effects of maximum and minimum temperatures on traction in cables
High voltage transmission lines

SUPPORT AND FOUNDATIONS

- Type of airline supports
- Advantages and disadvantages of various types of supports wood poles, steel or concrete
- Calculation of the supports and wooden poles, allowable stresses, safety factors, linear and nonlinear analysis
- Foundations for metal posts
- Flush poles in the ground and foundation types
- Suspension devices of posts
- Spans weight and maximum wind

R. JEANJEAN
High voltage transmission lines

Support and Foundations

- Repartition of supports on a profile
- Criteria for ground clearance and obstacles
- Maximum scope
- Constraints localization of supports
- Scope equivalent
- Effects of the media flexibility
- Minimum Distance between cables
High voltage transmission lines

MÉTHODOGY OF WORK

TO COLLECT
- EN 50341-1
- NATIONAL REGULATION
- TECHNICAL SPECIFICATION

R.JEANJEAN
High voltage transmission lines

MÉTHODOGY OF WORK

TO READ CHAPTER BY CHAPTER THE EN 50341-1

TO AMEND IT WITH THE NATIONAL REQUIREMENT

THEN TO BUILT THE SPECIFIC NNA

R.JEANJEAN

ENERGY COOPERATION BETWEEN THE EU, THE LITTORAL STATES OF THE BLACK & CASPIAN SEAS AND THEIR NEIGHBOURING COUNTRIES
Overhead electrical lines exceeding AC 45 kV

EN 50341-1 (2001)
Overhead electrical lines exceeding AC 45 kV

Structure

- **EN 50341-1** General requirement:
- **EN 50341-2** Index of National Normative Aspects
- **EN 50341-3-** NNA
Part 3: National Normative Aspects
The National Normative Aspects (NNAs) reflect national practices. They generally include A-deviations, special national conditions and national complements.

A-deviations:
A-deviations are required by existing national laws or regulations, which cannot be altered at the time of preparation of the standard. Reference is made to CENELEC Internal Regulations Part 2, definition 3.1.9.

Special national conditions (snc):
Special national conditions are national characteristics or practices that cannot be changed even over a long period, e.g. those due to climatic conditions, earth resistivity, etc.
EN 50341-1:2001

Overhead electrical lines exceeding AC 45 kV.

Part 1: General requirements
Common specifications
Introduction

1 Scope
1 Scope

This standard applies to overhead electric lines with rated voltages exceeding 45 kV AC and with rated frequencies below 100 Hz. This standard specifies the general requirements that shall be met for the design and construction of new overhead lines to ensure that the line is suitable for its purpose with regard to safety of persons, maintenance, operation and environmental considerations.
EN 50341-1:2001

2 Definitions, symbols and references

2.1 Definitions

2.2 List of symbols

2.3 References
3 Basis of design

3.1 General

3.2 Requirements
 - 3.2.1 Basic requirements
 - 3.2.2 Reliability of overhead lines
 - 3.2.3 Security requirements
 - 3.2.4 Safety requirements during construction and maintenance
3 Basis of design
3.1 General

This clause of the standard provides the basis and the general principles for the structural, geotechnical and mechanical design of overhead lines exceeding AC 45 kV. The clause should be read in conjunction with Eurocodes 1, 2, 3, 5, 7 and 8. The provisions in this standard supersede the corresponding clauses in the said Eurocodes.
3 Basis of design

3.1 General

The general principles of structural design are based on the limit state concept used in conjunction with the partial factor method as described in 3.7. The values of the partial factor for actions and material properties depend on the degree of uncertainty for the loads, resistances, geometrical quantities and design model, and on the type of structure and the type of limit state. Partial factors can also depend on the coordination of strength envisaged for the line.
In principle there are two approaches used to determine numerical values for actions and for partial factors.

The first is on the basis of the statistical evaluation of meteorological and experimental data and field observations. This should be done in the framework of a probabilistic reliability theory as described in IEC 60826.

A second approach is on the basis of calibration by a long and successful history of construction of overhead lines. For most of the factors proposed in the Eurocodes mentioned above this is the guiding principle.
In practice, the two approaches are used in combination, see Figure 3.1. In particular, a statistical method requires a sufficient set of data. In many cases additional activities to obtain such data will be valuable. Comparison with the traditional design method can be performed, related to the long standing experience of constructing and operating overhead lines mentioned above. From this point of view, the statistical approach can be considered as giving added value to the more traditional/empirical approach and vice versa.
The Empirical approach given in 4.3 is an alternative to the General approach applied regarding actions in 4.2. The Empirical approach incorporates the above mentioned experience of national high voltage regulations, which have existed in some countries since about 1900. Therefore, these regulations can give a good basis for calibration of the empirical method.

A countercheck of certain values with data obtained from a statistical analysis of available information should be carried out to confirm and calibrate the design criteria.
Each individual National Committee shall decide which specific national and/or regional requirements are to be employed in the design of overhead lines and also defines their relevant partial factors, see 4.2.11 and 4.3.11, if and as required. The National Committee can further decide to use the Empirical approach in 4.3. Partial factors along with related requirements are stated in the NNAs, thus being decisive. They may also be specified in a Project Specification.
3.2.5 Coordination of strength

3.2.6 Additional considerations

3.2.7 Design working life

3.2.8 Durability

3.2.9 Quality assurance
3.3 Limit states

- 3.3.1 General
- 3.3.2 Ultimate limit states
- 3.3.3 Serviceability limit states
- 3.3.4 Limit state design

3.4 Actions....

- 3.4.1 Principal classifications
- 3.4.2 Characteristic values of actions
- 3.4.3 Combination values of variable actions
EN 50341-1:2001

- 3.5 Material properties
- 3.6 Modelling for structural analysis and resistance
 - 3.6.1 General
 - 3.6.2 Interactions between support foundations and soil
- 3.7 Design values and verification method
 - 3.7.1 General
 - 3.7.2 Design values
 - 3.7.3 Basic design equation
 - 3.7.4 Combination of actions
Table 5.1 - Nominal voltages and corresponding highest system voltages

<table>
<thead>
<tr>
<th>Nominal voltage (kV)</th>
<th>Highest system voltage (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>50</td>
<td>72.5</td>
</tr>
<tr>
<td>60</td>
<td>72.5</td>
</tr>
<tr>
<td>63</td>
<td>72.5</td>
</tr>
<tr>
<td>66</td>
<td>72.5</td>
</tr>
<tr>
<td>70</td>
<td>82.5</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>123</td>
</tr>
<tr>
<td>132</td>
<td>145</td>
</tr>
<tr>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td>220</td>
<td>245</td>
</tr>
<tr>
<td>225</td>
<td>245</td>
</tr>
<tr>
<td>275</td>
<td>300</td>
</tr>
<tr>
<td>380</td>
<td>420</td>
</tr>
<tr>
<td>400</td>
<td>420</td>
</tr>
<tr>
<td>480</td>
<td>525</td>
</tr>
<tr>
<td>700</td>
<td>765</td>
</tr>
</tbody>
</table>

NOTE: Bold figures are according to IEC 60038.
Table 5.4 - Minimum electrical clearance distances in air necessary to withstand the power frequency voltage (to be used in extreme wind conditions)

<table>
<thead>
<tr>
<th>Highest system voltage U_s (kV)</th>
<th>D_{50Hz_p-e} (in metres) $K_g = 1,45$ conductor-structure</th>
<th>D_{50Hz_p-p} (in metres) $K_g = 1,60$ conductor to conductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>0,11</td>
<td>0,17</td>
</tr>
<tr>
<td>72,5</td>
<td>0,15</td>
<td>0,23</td>
</tr>
<tr>
<td>82,5</td>
<td>0,16</td>
<td>0,26</td>
</tr>
<tr>
<td>100</td>
<td>0,19</td>
<td>0,30</td>
</tr>
<tr>
<td>123</td>
<td>0,23</td>
<td>0,37</td>
</tr>
<tr>
<td>145</td>
<td>0,27</td>
<td>0,42</td>
</tr>
<tr>
<td>170</td>
<td>0,31</td>
<td>0,49</td>
</tr>
<tr>
<td>245</td>
<td>0,43</td>
<td>0,69</td>
</tr>
<tr>
<td>300</td>
<td>0,51</td>
<td>0,83</td>
</tr>
<tr>
<td>420</td>
<td>0,70</td>
<td>1,17</td>
</tr>
<tr>
<td>525</td>
<td>0,86</td>
<td>1,47</td>
</tr>
<tr>
<td>765</td>
<td>1,28</td>
<td>2,30</td>
</tr>
</tbody>
</table>
Table 5.2 - Clearances D_{el} and D_{pp} to withstand lightning overvoltages

<table>
<thead>
<tr>
<th>Lightning withstand voltage $U_{90%_{r,l}}$ of the line insulator strings (kV)</th>
<th>D_{el} (in metres) $K_g = 1.3$, K_s (1 000 m)</th>
<th>D_{pp} (in metres) $K_g = 1.6$, K_s (1 000 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.48</td>
<td>0.54</td>
</tr>
<tr>
<td>300</td>
<td>0.58</td>
<td>0.65</td>
</tr>
<tr>
<td>350</td>
<td>0.67</td>
<td>0.74</td>
</tr>
<tr>
<td>400</td>
<td>0.77</td>
<td>0.85</td>
</tr>
<tr>
<td>450</td>
<td>0.85</td>
<td>0.96</td>
</tr>
<tr>
<td>500</td>
<td>0.95</td>
<td>1.06</td>
</tr>
<tr>
<td>550</td>
<td>1.04</td>
<td>1.17</td>
</tr>
<tr>
<td>600</td>
<td>1.14</td>
<td>1.26</td>
</tr>
<tr>
<td>650</td>
<td>1.23</td>
<td>1.37</td>
</tr>
<tr>
<td>700</td>
<td>1.33</td>
<td>1.47</td>
</tr>
<tr>
<td>750</td>
<td>1.41</td>
<td>1.58</td>
</tr>
<tr>
<td>800</td>
<td>1.50</td>
<td>1.68</td>
</tr>
<tr>
<td>850</td>
<td>1.60</td>
<td>1.79</td>
</tr>
<tr>
<td>900</td>
<td>1.69</td>
<td>1.89</td>
</tr>
<tr>
<td>950</td>
<td>1.78</td>
<td>2.00</td>
</tr>
<tr>
<td>1 000</td>
<td>1.88</td>
<td>2.08</td>
</tr>
<tr>
<td>1 050</td>
<td>1.97</td>
<td>2.19</td>
</tr>
<tr>
<td>1 100</td>
<td>2.06</td>
<td>2.29</td>
</tr>
<tr>
<td>1 150</td>
<td>2.14</td>
<td>2.40</td>
</tr>
<tr>
<td>1 200</td>
<td>2.23</td>
<td>2.50</td>
</tr>
<tr>
<td>1 250</td>
<td>2.33</td>
<td>2.60</td>
</tr>
<tr>
<td>1 300</td>
<td>2.42</td>
<td>2.71</td>
</tr>
<tr>
<td>1 350</td>
<td>2.51</td>
<td>2.81</td>
</tr>
<tr>
<td>1 400</td>
<td>2.61</td>
<td>2.92</td>
</tr>
<tr>
<td>1 450</td>
<td>2.70</td>
<td>3.02</td>
</tr>
<tr>
<td>1 500</td>
<td>2.79</td>
<td>3.13</td>
</tr>
<tr>
<td>1 550</td>
<td>2.89</td>
<td>3.23</td>
</tr>
<tr>
<td>1 600</td>
<td>2.98</td>
<td>3.33</td>
</tr>
<tr>
<td>1 650</td>
<td>3.07</td>
<td>3.44</td>
</tr>
<tr>
<td>1 700</td>
<td>3.17</td>
<td>3.54</td>
</tr>
<tr>
<td>1 750</td>
<td>3.26</td>
<td>3.65</td>
</tr>
<tr>
<td>1 800</td>
<td>3.35</td>
<td>3.75</td>
</tr>
<tr>
<td>1 850</td>
<td>3.45</td>
<td>3.86</td>
</tr>
<tr>
<td>1 900</td>
<td>3.54</td>
<td>3.96</td>
</tr>
<tr>
<td>1 950</td>
<td>3.63</td>
<td>4.06</td>
</tr>
<tr>
<td>2 000</td>
<td>3.72</td>
<td>4.17</td>
</tr>
<tr>
<td>2 050</td>
<td>3.82</td>
<td>4.27</td>
</tr>
<tr>
<td>2 100</td>
<td>3.91</td>
<td>4.38</td>
</tr>
<tr>
<td>2 150</td>
<td>4.00</td>
<td>4.48</td>
</tr>
</tbody>
</table>

NOTE: This table gives numerical values of clearances at 1 000 m of altitude. If the altitude is consistently lower or higher than 1 000 m, the clearance distances can be corrected using the altitude factor given in E 2.1.4.
Table 5.4.5.2 – Minimum clearances to residential and other buildings

<table>
<thead>
<tr>
<th>Load Case</th>
<th>Clearance cases: Residential and other buildings</th>
<th>Line adjacent to buildings</th>
<th>Antenna, street lamps, flag poles, advertising signs and similar structures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Line above buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With fire resistant roofs where the slope is greater than 15° to the horizontal</td>
<td>With non fire resistant roofs and fire sensitive installations such as fuel stations, etc.</td>
<td>Antennas and lightning protection facilities</td>
</tr>
<tr>
<td>Maximum conductor temperature</td>
<td>2 m+ D_{ex}, but greater than 3 m</td>
<td>10 m+ D_{ex}</td>
<td>2 m+ D_{ex}, but greater than 3 m (Horizontal clearance)</td>
</tr>
<tr>
<td>Ice load</td>
<td>2 m+ D_{ex}, but greater than 3 m</td>
<td>10 m+ D_{ex}</td>
<td>2 m+ D_{ex}, but greater than 3 m (Horizontal clearance)</td>
</tr>
<tr>
<td>Wind load</td>
<td>2 m+ D_{ex}, but greater than 3 m</td>
<td>10 m+ D_{ex}</td>
<td>2 m+ D_{ex}, but greater than 3 m (Horizontal clearance)</td>
</tr>
<tr>
<td>Extreme ice load</td>
<td>D_{ex}</td>
<td>D_{ex}</td>
<td>D_{ex}</td>
</tr>
<tr>
<td>Remarks</td>
<td>It is considered that it is reasonable for a person to stand on the roof for maintenance and to use a hand tool. In the event of heavy icing it is assumed that no-one will use the roofs under this condition.</td>
<td>The clearance shall be sufficient to remove the possibility that induced voltages could lead to ignition.</td>
<td>The clearance D_{ex} shall be maintained even when the structure falls towards the line conductors.</td>
</tr>
</tbody>
</table>

NOTE: In some countries it is not permitted in general to cross over or to be close to buildings and the clearances given in this clause do not apply to those countries. Those countries should define how close power lines can be to buildings in the NNAs.
4 Actions on lines

4.1 Introduction...

4.2 Actions, General approach
 - 4.2.1 Permanent loads
 - 4.2.2 Wind loads
 - 4.2.3 Ice loads
 - 4.2.4 Combined wind and ice loads
EN 50341-1:2001

- 4.2.5 Temperature effects
- 4.2.6 Construction and maintenance loads
- 4.2.7 Security loads
- 4.2.8 Forces due to short circuit currents
- 4.2.9 Other special forces
- 4.2.10 Load cases
- 4.2.11 Partial factors for actions
4.3 Actions, Empirical approach

- 4.3.1 Permanent loads
- 4.3.2 Wind loads
- 4.3.3 Ice loads
- 4.3.4 Combined wind and ice loads
- 4.3.5 Temperature
EN 50341-1:2001

- 4.3.6 Construction and maintenance loads
- 4.3.7 Security loads
- 4.3.8 Forces due to short circuit currents
- 4.3.9 Other special forces
- 4.3.10 Load cases
- 4.3.11 Partial factors for actions
Table 4.2.7 - Standard load cases

<table>
<thead>
<tr>
<th>Load case</th>
<th>Load as per subclause</th>
<th>Conditions</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a, 1b</td>
<td>4.2.2</td>
<td>Extreme wind load
Wind load at a minimum temperature</td>
<td>See (a)
If relevant, see 4.2.5</td>
</tr>
<tr>
<td>2a, 2b, 2c, 2d</td>
<td>4.2.3</td>
<td>Uniform ice loads on all spans
Uniform ice loads, transversal bending
Unbalanced ice loads, longitudinal bend.
Unbalanced ice loads, torsional bending</td>
<td>If relevant, see (b)
See (c)
If relevant, see (d)</td>
</tr>
<tr>
<td>3</td>
<td>4.2.4</td>
<td>Combined wind and ice loads</td>
<td>See (e)</td>
</tr>
<tr>
<td>4</td>
<td>4.2.6</td>
<td>Construction and maintenance loads</td>
<td></td>
</tr>
<tr>
<td>5a, 5b</td>
<td>4.2.7 (a), 4.2.7 (b)</td>
<td>Security loads, torsional loads
Security loads, longitudinal loads</td>
<td>Reduced partial factors for material properties may apply as given in clauses 7 and 8.</td>
</tr>
</tbody>
</table>
Table 4.3.1 - Conductor tension load cases

<table>
<thead>
<tr>
<th>Load case</th>
<th>Temperature °C</th>
<th>Load</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>-5</td>
<td>Conductor self-weight + normal additional load (respective increased additional load)</td>
<td>(1)</td>
</tr>
<tr>
<td>Normal</td>
<td>-20</td>
<td>Conductor self-weight</td>
<td>(1)</td>
</tr>
<tr>
<td>Normal</td>
<td>+15</td>
<td>Conductor self-weight + maximum wind load</td>
<td>(1), (3)</td>
</tr>
<tr>
<td>Normal</td>
<td>+40</td>
<td>Conductor self-weight</td>
<td>(1), (2)</td>
</tr>
</tbody>
</table>

NOTE 1 Details of normal and exceptional load cases may be defined in the relevant NNAs.

NOTE 2 In case of overhead lines for which a high electric current is likely to occur in summer time, a higher conductor temperature shall be considered, for instance +60 °C. The maximum conductor temperature is defined in the Project Specification.

NOTE 3 Normal ambient reference temperature associated with the wind load as given in NNAs.
5. Electrical requirements

5.1 Voltage classification

5.2 Currents
 - 5.2.1 Normal current
 - 5.2.2 Short-circuit current

5.3 Insulation co-ordination
 - 5.3.1 General
5.3.2 Origin and classification of voltage stresses on overhead lines and evaluation of the representative over voltages

5.3.3 Determination of the co-ordination withstand voltage

5.3.4 Determination of the required withstand voltage

5.3.5 Electrical clearance distances to avoid flashover
5.4 Internal and external clearances

- 5.4.1 Introduction
- 5.4.2 General considerations and load cases
- 5.4.3 Clearances within the span and at the tower
- 5.4.4 Clearances to ground in areas remote from buildings, roads, railways and navigable waterways
- 5.4.5 Clearances to buildings, traffic routes, other lines and recreational areas
5.5 Corona effect

- 5.5.1 Radio noise
- 5.5.2 Audible noise
- 5.5.3 Corona loss

5.6 Electric and magnetic fields

- 5.6.1 Electric and magnetic fields under a line
- 5.6.2 Electric and magnetic field induction
- 5.6.3 Interference with telecommunication circuits
6. Earthing systems

6.1 Purpose

6.2 Dimensioning of earthing systems at power frequency

6.2.1 General

6.2.2 Dimensioning with respect to corrosion and mechanical strength

6.2.3 Dimensioning with respect to thermal strength
6.2.4 Dimensioning with regard to human safety

6.3 Construction of earthing systems
 6.3.1 Installation of earth electrodes
 6.3.2 Transferred potentials

6.4 Earthing measures against lightning effects

6.5 Measurements for and on earthing systems

6.6 Site inspection and documentation of earthing systems
Basic design

(1) Tower of insulating material?
 Yes
 (2) Tower surroundings frequently occupied?
 Yes
 (3) Immediate automatic disconnection?
 Yes
 (4) Determination of earth potential rise U_e
 Yes
 (5) $U_e = 2U_D$?
 Yes
 (6) Determination of touch voltage U_T
 Yes
 (7) $U_T = U_{ot}$?
 Yes
 (8) Measures required for the reduction of the touch voltages

 No
 (3) Immediate automatic disconnection?
 No

 Correct design
EN 50341-1:2001

7 Supports

7.1 Initial design considerations

7.2 Materials

- 7.2.1 Steel materials, bolts, nuts and washers, welding consumables
- 7.2.2 Cold formed steel
- 7.2.3 Requirements for steel grades subject to galvanising
- 7.2.4 Holding-down bolts
- 7.2.5 Concrete and reinforcing steel
- 7.2.6 Timber
- 7.2.7 Guy materials
EN 50341-1:2001

7.2.8 Other materials

7.3 Lattice steel towers

7.3.1 General
7.3.2 Basis of design
7.3.3 Materials
7.3.4 Serviceability limit states
7.3.5 Ultimate limit states
7.3.6 Connections
7.3.7 Fabrication and erection
7.3.8 Design assisted by testing
7.4 Steel poles

- 7.4.1 General
- 7.4.2 Basis of design
- 7.4.3 Materials
- 7.4.4 Serviceability limit states
- 7.4.5 Ultimate limit states
- 7.4.6 Connections
- 7.4.7 Fabrication and erection
7.4.8 Design assisted by testing

7.5 Timber poles

- 7.5.1 General
- 7.5.2 Basis of design
- 7.5.3 Materials
- 7.5.4 Serviceability limit states
- 7.5.5 Ultimate limit states
- 7.5.6 Resistance of connections
- 7.5.7 Design assisted by testing
7.6 Concrete poles

- 7.6.1 General
- 7.6.2 Basis of design
- 7.6.3 Materials
- 7.6.4 Serviceability limit states
- 7.6.5 Ultimate limit states
- 7.6.6 Design assisted by testing
7.7 Guyed structures

- 7.7.1 General
- 7.7.2 Basis of design
- 7.7.3 Materials
- 7.7.4 Serviceability limit states
- 7.7.5 Ultimate limit states
- 7.7.6 Design details for guys

7.8 Other structures
7.9 Corrosion protection and finishes

- 7.9.1 General
- 7.9.2 Galvanising
- 7.9.3 Metal spraying
- 7.9.4 Paint over galvanising in plant (Duplex system
- 7.9.5 Decorative finishes
EN 50341-1:2001

- 7.9.6 Use of weather-resistant steels
- 7.9.7 Protection of timber poles

7.10 Maintenance facilities
- 7.10.1 Climbing
- 7.10.2 Maintainability
- 7.10.3 Safety requirements

7.11 Loading tests
7.12 Assembly and erection
8 Foundations

- 8.1 Introduction...
- 8.2 General requirements
- 8.3 Soil investigation
- 8.4 Loads acting on the foundations
8.5 Geotechnical design
- 8.5.1 General
- 8.5.2 Geotechnical design by calculation
- 8.5.3 Geotechnical design by prescriptive measures

8.6 Loading tests

8.7 Structural design

8.8 Construction and installation
9 Conductors and overhead earthwires (ground wires) with or without telecommunication circuits

- 9.1 Introduction....
- 9.2 Aluminium based conductors
 - 9.2.1 Characteristics and dimensions
 - 9.2.2 Electrical requirements
 - 9.2.3 Conductor service temperatures and grease characteristics
 - 9.2.4 Mechanical requirements
9.2.5 Corrosion protection
9.2.6 Test requirements

9.3 Steel based conductors
9.3.1 Characteristics and dimensions
9.3.2 Electrical requirements
9.3.3 Conductor service temperatures and grease characteristics
9.3.4 Mechanical requirements
9.3.5 Corrosion protection
9.3.6 Test requirements
9.4 Copper based conductors.

9.5 Conductors (OPCON’s) and ground wires (OPGW’s) containing optical fibre telecommunication circuits

9.5.1 Characteristics and dimensions
9.5.2 Electrical requirements
EN 50341-1:2001

- 9.5.3 Conductor service temperature
- 9.5.5 Corrosion protection
- 9.5.6 Test requirements

- 9.6 General requirement
 - 9.6.1 Avoidance of damage.
 - 9.6.2 Partial factor for conductors

- 9.7 Test reports and certificates..
- 9.8 Selection, delivery and installation of conductors
10 Insulators

- 10.1 General
- 10.2 Standard electrical requirements
- 10.3 RIV requirements and corona extinction voltage
- 10.4 Pollution performance requirements
- 10.5 Power arc requirements
- 10.6 Audible noise requirements
- 10.7 Mechanical requirements
10.8 Durability requirements

10.8.1 General requirements for durability of insulators
10.8.2 Protection against vandalism
10.8.3 Protection of ferrous materials
10.8.4 Additional corrosion protection

10.9 Material selection and specification

10.10 Characteristics and dimensions of insulators
10.11 Type test requirements
 10.11.1 Standard type tests
 10.11.2 Optional type tests

10.12 Sample test requirements

10.13 Routine test requirements

10.14 Summary of test requirements

10.15 Test reports and certificates

10.16 Selection, delivery and installation of insulators
11 Line equipment. Overhead line fittings

11.1 General

11.2 Electrical requirements.
 11.2.1 Requirements applicable to all fittings
 11.2.2 Requirements applicable to current carrying fittings

11.3 RIV requirements and corona extinction voltage

11.4 Magnetic characteristics

11.5 Short circuit current and power arc requirements

11.6 Mechanical requirements

11.7 Durability requirements
EN 50341-1:2001

- 11.8 Material selection and specification
- 11.9 Characteristics and dimensions of fittings
- 11.10 Type test requirements
 - 11.10.1 Standard type tests
 - 11.10.2 Optional type tests
- 11.11 Sample test requirements
- 11.12 Routine test requirements
- 11.13 Test reports and certificates
- 11.14 Selection, delivery and installation of fittings
12 Quality assurance, checks and taking-over

12.1 Quality assurance

12.2 Checks and taking-over
EN 50341-1:2001

Amendment to EN 50341-1
EN 50341-1:2001

- Annex A Strength coordination
 - A.1 Recommended design criteria
 - A.2 Proposed strength coordination
Annex B Extreme wind speeds and ice loads

B.1 Definition of symbols used in this annex
B.2 Evaluation of extreme wind speed data
B.3 Definition of extreme ice load
B.4 Statistical ice parameters
 B.4.1 Basic ice load
 B.4.2 Maximum yearly ice load l_m
 B.4.3 Maximum ice load over several years l_{max}
 B.4.4 Mean value l_{mm} of maximum yearly ice loads
 B.4.5 Coefficient of variation v_l for maximum yearly ice loads
B.5 Extreme ice load evaluation based on various data sources

B.5.1 Data sources for statistical evaluation

B.5.2 Yearly maxima ice loads during periods of at least 10 years are available

B.5.3 Only the maximum ice load l_{max} is known for a limited number of years

B.5.4 Evaluation of annual maximum ice load by means of analyses of meteorological data

B.6 Combination of wind speeds and ice loads

B.6.1 Extreme ice load l_L combined with a moderate wind speed V_{IH}

B.6.2 High wind speed V_{IL} combined with a moderate ice load l_H
Annex C Special forces

C.1 Definition of symbols used in this annex
C.2 Forces due to short circuit currents
C.3 Avalanches, creeping snow
C.4 Earthquakes.............
Annex D Statistical data for the Gumbel distribution of extremes

- D.1 Definition of symbols used in this annex
- D.2 The Gumbel distribution
- D.3 Example of using C_1 and C_2
- D.4 Calculating C_1 and C_2
Annex E Electrical requirements

E.1 Definition of symbols used in this annex

E.2 Insulation co-ordination

E.2.1 Development of theoretical formulae for calculating electrical distances

E.2.2 Required withstand voltage of the air U_{rw}

E.2.3 Over voltages to be taken into account

E.2.4 Calculation formulae...

E.2.5 Altitude factor........
Annex F Electrical requirements

- F.1 Definition of symbols used in this annex
- F.2 Insulation co-ordination. Examples of calculation of D_{el}, D_{pp} and D_{50Hz} for different system voltages
 - F.2.1 Range I: 90 kV system equipped with insulator strings composed of 6 units
 - F.2.2 Range I: 90 kV system equipped with insulator strings composed of 9 units
 - F.2.3 Range II: 400 kV system
Annex G (normative) Earthing systems

G.1 Definition of symbols used in this annex
G.2 Minimum dimensions of earth electrode materials ensuring mechanical strength
and corrosion resistance
G.3 Current rating calculation
G.4 Touch voltage and body current
 G.4.1 Equivalence between touch voltage and body current
 G.4.2 Calculation taking into account additional resistances
G.5 Measuring touch voltages
G.6 Reduction factor related to earthwires of overhead lines
 G.6.1 General
 G.6.2 Values of reduction factors of overhead lines
Annex H Earthing systems

H.1 Definition of symbols used in this annex

H.2 Basis for the verification
 H.2.1 Soil resistivity
 H.2.2 Resistance to earth

H.3 Installing the earth electrodes and earthing conductors
 H.3.1 Installation of earth electrodes
 H.3.2 Installation of earthing conductors

H.4 Measurements for and on earthing systems
 H.4.1 Measurement of soil resistivities
 H.4.2 Measurement of resistances to earth and impedances to earth
 H.4.3 Determination of the earth potential rise
Annex J (normative) Lattice steel towers

- J.1 Definition of symbols used in this annex
- J.2 Classification of cross sections
 - J.2.1 Basis
 - J.2.2 Classification
 - J.2.3 Effective cross-section properties for compression numbers
- J.3 Section properties
 - J.3.1 Gross cross section
 - J.3.2 Net area
- J.4 Check of cross section resistance
 - J.4.1 Tension
 - J.4.2 Compression
 - J.4.3 Bending moment
 - J.4.4 Bending and axial forces
J.5 Check of the buckling resistance of members
 ◆ J.5.1 Compression members
 ◆ J.5.2 Lateral torsional buckling of beams
 ◆ J.5.3 Bending and axial tension
 ◆ J.5.4 Bending and axial compression

J.6 Buckling length of members
 ◆ J.6.1 General……..
 ◆ J.6.2 Leg members and chords
 ◆ J.6.3 Bracing patterns
 ◆ J.6.4 Compound members
J.7 Additional recommendations on bracing patterns
 ◦ J.7.1 Horizontal edge members with horizontal plan bracing
 ◦ J.7.2 Horizontal edge members without horizontal plan bracing
 ◦ J.7.3 Cranked K bracing
 ◦ J.7.4 Portal frame

J.8 Calculation of effective slenderness κ_{eff}

J.9 Selection of buckling cases for angles
 ◦ J.9.1 Single angle
 ◦ J.9.2 Compound members / Laced members

J.10 Secondary (redundant) members

J.11 Bolted connections
Annex K (normative) Steel poles

K.1 Definition of symbols used in this annex
K.2 Classification of cross sections
K.3 Effective cross-sections properties of class 4 cross-sections
K.4 Resistance of circular cross sections, without opening, under preponderant bending moment
K.5 Resistance of polygonal cross sections, without opening, under preponderant bending moment
 K.5.1 Class 3 cross-sections
 K.5.2 Class 4 cross-sections
K.6 Design of holding-down bolts
EN 50341-1:2001

Annex L Design requirements for supports and foundations

L.1 Structural requirement
L.2 Configuration requirements: types of supports and uses
L.3 Phase conductor and earthwire attachment
L.4 Foundation steelwork
L.5 Erection/maintenance facilities
L.6 Mass-length restrictions
Annex M Typical values of the geotechnical parameters of soils and rocks

M.1 General
M.2 Definitions
M.3 Units
Annex N Conductors and overhead earthwires

N.1 Specification of conductors and earthwires
 N.1.1 Factors influencing the specification of conductors and earthwires
 N.1.2 Operational factors
 N.1.3 Maintenance requirements
 N.1.4 Environmental parameters

N.2 Selection of conductors and earthwires
N.3 Packing and delivery of conductors and earthwire
N.4 Precautions during installation of conductors and earthwires
Annex P

Tests on overhead line insulators and insulator sets in porcelain and glass insulating materials
Annex Q Insulators…

- Q.1 Specification of insulators
 - Q.1.1 Factors influencing the specification of insulators
 - Q.1.2 Operational factors
 - Q.1.3 Maintenance requirements
 - Q.1.4 Environmental parameters
- Q.2 Selection of insulators
- Q.3 Packing and delivery of insulators
- Q.4 Precautions during installation of insulators
Annex R Line equipment – Overhead line fittings

- R.1 Specification and selection of fittings
 - R.1.1 Factors influencing specification and selection
 - R.1.2 Operational factors
 - R.1.3 Maintenance requirements
 - R.1.4 Environmental parameters
- R.2 Packing and delivery of fittings
- R.3 Precautions during installation of fittings
EN 50341-2

Country Origin and Code

- AT Austrian National Committee EN 50341-3-1
- BE Belgian National Committee EN 50341-3-2
- CH Swiss National Committee EN 50341-3-3
- DE German National Committee EN 50341-3-4
- DK Danish National Committee EN 50341-3-5
- ...
EN 50341-3-8

National Normative Aspects (NNA) for FRANCE

based on EN 50341-1:2001

........................
The French National Committee (NC) is identified by the following address:

- Phone n° +33 1 40 93 62 00
- Fax n° +33 1 40 93 03 96
- Name/number of relevant subcommittee:
 - UTE 33, avenue du General Leclerc
 - BP 23 92262 FONTENAY-AUX-ROSES CEDEX

The French NC has prepared this Part 3-8 of EN 50341, listing the French national normative aspects, under its sole responsibility, and duly passed it through the CENELEC and CLC/TC 11 procedures.

NOTE: The French NC also takes sole responsibility for the technically correct coordination of this EN 50341-3-8 with EN 50341-1.

This EN 50341-3-8 is normative in France and informative for other countries.
This Part 3-8 has to be read in conjunction with EN 50341-1, hereinafter referred to as Part 1. All clause numbers used in this Part 3-8 correspond to those of Part 1. Specific sub-clauses, which are prefixed "FR", are to be read as amendments to the relevant text in Part 1. Any necessary clarification regarding the application of this Part 3-8 in conjunction with Part 1 shall be referred to the French NC who will, in cooperation with CLC/TC 11, clarify the requirements.

When no reference is made in Part 3-8 to a specific sub-clause, then Part 1 applies.
In the case of "boxed values" defined in Part 1, amended values (if any) which are defined in Part 3-8 are compulsory in France.

However any boxed value, either in Part 1 or in Part 3-8, shall not be amended in the direction of greater risk in a Project Specification.

The French NC declares in accordance with 3.1 of Part 1 that this Part 3-8 follows the "Deterministic Approach" (sub-clause 4.3), and that consequently sub-clause 4.1 "General approach" is not applicable for France.

The French national standards/regulations related to overhead electrical lines exceeding 45 kV (a.c.) are identified/listed in 2.3/FR.1 to 2.3/FR.2.
Thank you for your attention